Other collections -
Dictionaries and Sets

1. Introduction
2. Dictionary

3. Set

We've discussed three built-in sequence collections — strings, lists and tuples.

We've discussed three built-in sequence collections — strings, lists and tuples.

Now, we consider the built-in non-sequence collections — dictionaries and sets.

We've discussed three built-in sequence collections — strings, lists and tuples.

Now, we consider the built-in non-sequence collections — dictionaries and sets.

e A dictionary is an unordered collection which stores key-value pairs that map

immutable keys to values, just as a conventional dictionary maps words to
definitions.

e A set is an unordered collection of unique immutable elements.

Dictionaries

Like a 1list,a dictionary is a mutable collection of many values, but more general. In
a list, the index positions have to be integers; in a dictionary, the indices can be any
immutable data type.

Like a 1list,a dictionary is a mutable collection of many values, but more general. In
a list, the index positions have to be integers; in a dictionary, the indices can be any

immutable data type.

DiCtionary in PVthon#r,n PYnative.com

Unordered collections of unique values stored in (Key-Value) pairs.

d={a: 10, 'b": 20, 'c': 30}

]

d['lal] d[lb,] d[lc'I]

v" Unordered: The items in dict are stored without any index value
v" Unique: Keys in dictionaries should be Unique
v" Mutable: We can add/Modify/Remove key-value after the creation

source: https://pynative.com/python-dictionaries/

You can think of a dictionary as a mapping between a set of indices (which are called
keys) and a set of values. Each key maps to a value. The association of a key and a value
is called a key-value pair or sometimes an item.

You can think of a dictionary as a mapping between a set of indices (which are called
keys) and a set of values. Each key maps to a value. The association of a key and a value
is called a key-value pair or sometimes an item.

A dictionary s keys must be immutable (such as strings, integers or tuples)
and unique (that is, no duplicates). However, multiple keys can have the same value.

You can think of a dictionary as a mapping between a set of indices (which are called
keys) and a set of values. Each key maps to a value. The association of a key and a value
is called a key-value pair or sometimes an item.

A dictionary s keys must be immutable (such as strings, integers or tuples)
and unique (that is, no duplicates). However, multiple keys can have the same value.

As an example, we'll build a dictionary that maps from subjects to grades, so the keys are
string while the values are integers . The function dict creates a new dictionary

with no items.

In [2]: type({}) # {} also treated as dict in Python

Out[2]: dict

type({}) # {} also treated as dict in Python
dict

grade = dict()
type(grade), grade

(dict, {})

type({}) # {} also treated as dict in Python
dict

grade = dict()
type(grade), grade

(dict, {})

To add/update items to the dictionary, you can again use subscript operator (square
brackets):

type({}) # {} also treated as dict in Python
dict

grade = dict()
type(grade), grade

(dict, {})

To add/update items to the dictionary, you can again use subscript operator (square
brackets):

grade['calculus'] = 85 # Key: 'calculus', value: 85
print(grade) # Note that key and value are separate by colon

{'calculus': 85}

You can create a dictionary that contains multiple items by enclosing in curly braces,
{}, a comma-separated list of key—value pairs, each of the form key:value.

You can create a dictionary that contains multiple items by enclosing in curly braces,
{}, a comma-separated list of key—value pairs, each of the form key:value.

grade = {'calculus':85, 'introduction to mathematics':80, 'computer programmi
grade

{'calculus': 85,
"introduction to mathematics': 890,
"computer programming': 90,
'linear algebra': 95}

You can create a dictionary that contains multiple items by enclosing in curly braces,
{}, a comma-separated list of key—value pairs, each of the form key:value.

grade = {'calculus':85, 'introduction to mathematics':80, 'computer programmi
grade

{'calculus': 85,
"introduction to mathematics': 890,
"computer programming': 90,
'linear algebra': 95}

Note that you can store them using separate lists for subjects and scores, but the
following update and maintenance will become tedious:

subjects = ['calculus', 'introduction to mathematics', 'computer

programming', 'linear algebra']
score = [85, 80, 90, 95]

You can now use the keys to look up the corresponding values:

You can now use the keys to look up the corresponding values:

print(grade['computer programming'])

90

You can now use the keys to look up the corresponding values:

print(grade['computer programming'])

90

You can obtain the number of items using len()

You can now use the keys to look up the corresponding values:

print(grade['computer programming'])

90

You can obtain the number of items using len()

len(grade)

4

Trying to access a key that does not exist in a dictionary will resultin a KeyError
error message, much like a 1list’s “out-of-range” IndexError error message.

Trying to access a key that does not exist in a dictionary will resultin a KeyError
error message, much like a 1list’s “out-of-range” IndexError error message.

grade['English']

KeyError Traceback (most recent call
last)

~\AppData\Local\Temp\ipykernel _35416\3219575328.py in

----> 1 grade["English']

KeyError: 'English'

Trying to access a key that does not exist in a dictionary will resultin a KeyError
error message, much like a 1list’s “out-of-range” IndexError error message.

grade['English']

KeyError Traceback (most recent call
last)

~\AppData\Local\Temp\ipykernel _35416\3219575328.py in
----> 1 grade["English']

KeyError: 'English'

To add or delete an entry, it is similar to list

Trying to access a key that does not exist in a dictionary will resultin a KeyError
error message, much like a 1list’s “out-of-range” IndexError error message.

grade['English']

KeyError Traceback (most recent call
last)

~\AppData\Local\Temp\ipykernel _35416\3219575328.py in
----> 1 grade['English']

KeyError: 'English'

To add or delete an entry, it is similar to list

grade['English'] = 100
grade

{'calculus': 85,
"introduction to mathematics': 890,
"computer programming': 90,
"linear algebra': 95,
'English': 100}

You can delete a key—value pair from a dictionary with the del statement:

You can delete a key—value pair from a dictionary with the del statement:

del grade['English']
grade

{'calculus': 85,
"introduction to mathematics': 890,
"computer programming': 90,
'linear algebra': 95}

In [11]: display_quiz(path+"dictl.json", max_width=800)

What is printed by the following statements?

{"a" 1, "b™ 2} {"a": 99, "b": 2}

An error occurs due to reassignment. {"a": 99, "b": 2, "a": 1}

The keys(), values(),and items() Methods

There are three dictionary methods that will return 1ist -like values of the
dictionary 's keys, values, or both keys and values: keys(), values(),and items() .

There are three dictionary methods that will return 1ist -like values of the
dictionary 's keys, values, or both keys and values: keys(), values(),and items() .

The values returned by these methods are not true lists, but these data types
(dict_keys, dict_values, and dict_items, respectively) can be used in for loops
(Just like range object)!

There are three dictionary methods that will return 1ist -like values of the
dictionary 's keys, values, or both keys and values: keys(), values(),and items() .

The values returned by these methods are not true lists, but these data types
(dict_keys, dict_values, and dict_items, respectively) can be used in for loops
(Just like range object)!

If you want a true list from one of these methods, pass its list-like return value to the
list() function

There are three dictionary methods that will return 1ist -like values of the
dictionary 's keys, values, or both keys and values: keys(), values(),and items() .

The values returned by these methods are not true lists, but these data types
(dict_keys, dict_values, and dict_items, respectively) can be used in for loops
(Just like range object)!

If you want a true list from one of these methods, pass its list-like return value to the
list() function

subject = list(grade.keys())
score = list(grade.values())
print(subject)

print(score)

['calculus', 'introduction to mathematics', 'computer programming', 'l
inear algebra']
[85, 80, 90, 95]

In [13]:

for v in grade.values():

85
80
90
95

print(v)

for v in grade.values():
print(v)

85
80
90
95

Here, a for loop iterates over each of the values in the grade dictionary. A for loop
can also iterate over the keys:

for v in grade.values():
print(v)

85
80
90
95

Here, a for loop iterates over each of the values in the grade dictionary. A for loop
can also iterate over the keys:

for k in grade.keys():
print(k)

calculus

introduction to mathematics
computer programming

linear algebra

for k in grade:
print(k)

calculus

introduction to mathematics
computer programming

linear algebra

for k in grade:
print(k)

calculus

introduction to mathematics
computer programming

linear algebra

Note that by default, it will traverse over the keys!

for k in grade:
print(k)

calculus

introduction to mathematics
computer programming

linear algebra

Note that by default, it will traverse over the keys!

Dictionaries have a method called items() that returns a list of tuples, where each tuple
is a key-value pair:

for k in grade:
print(k)

calculus

introduction to mathematics
computer programming

linear algebra

Note that by default, it will traverse over the keys!

Dictionaries have a method called items() that returns a list of tuples, where each tuple
is a key-value pair:

list(grade.items())

[('calculus', 85),

("introduction to mathematics', 890),
('computer programming', 90),
('linear algebra', 95)]

Combining items (), multiple assignment, and for, you can see a nice code pattern for
traversing the keys and values of a dictionary in a single loop:

Combining items (), multiple assignment, and for, you can see a nice code pattern for
traversing the keys and values of a dictionary in a single loop:

for key, val in grade.items():
print(key,val)

calculus 85

introduction to mathematics 80
computer programming 90

linear algebra 95

In [18]: display quiz(path+"dict2.json", max_width=800)

What is printed by the following statements?

["fruit”, "quantity", "price"] ["apple"”, 10, 2.5] ["fruit", ["fruit”, "quantity", "price"] [("fruit”, "apple"),
"apple”, "quantity", 10, "price", 2.5] ("quantity”, 10), ("price", 2.5)] ["apple”, 10, 2.5]
It prints the dictionary’s keys, values, and items ["fruit", "quantity”, "price"] ["apple", 10, 2.5] [("fruit",
without converting them to lists. "apple"), ("quantity", 10), ("price", 2.5)]

Checking Whether a Key or Value Exists in a Dictionary

Recall from the previous chapter that the in and not in operators can check whether a

value exists in a list. You can also use these operators to see whether a certain key or value
exists in a dictionary

Recall from the previous chapter that the in and not in operators can check whether a
value exists in a list. You can also use these operators to see whether a certain key or value
exists in a dictionary

‘calculus' in grade, 'English' in grade.keys(), 85 in grade.values()

(True, False, True)

Retrieve value uisng get() Method

In [26]: if 'English' in grade:
e_score= grade['English']

if 'English' in grade:
e_score= grade['English']

It's tedious to check whether a key exists in a dictionary before accessing that key's
value. Fortunately, dictionaries have a get() method that takes two arguments: the key
of the value to retrieve and a fallback value to return if that key does not exist.

if 'English' in grade:
e_score= grade['English']

It's tedious to check whether a key exists in a dictionary before accessing that key's
value. Fortunately, dictionaries have a get() method that takes two arguments: the key
of the value to retrieve and a fallback value to return if that key does not exist.

picnicItems = {'apples': 5, 'cups': 2}
print('I am bringing ' + str(picnicItems.get('cups', 0)) +
print('I am bringing ' + str(picnicItems.get('eggs', 0)) +

cups.')
eggs. ")

I am bringing 2 cups.
I am bringing © eggs.

Because there is no 'eggs’ key in the picnicItems dictionary, the default value O is
returned by the get() method. Without using get (), the code would have caused a
KeyError message

Because there is no 'eggs’ key in the picnicItems dictionary, the default value O is
returned by the get() method. Without using get (), the code would have caused a
KeyError message

picnicItems = {'apples': 5, 'cups': 2}
'I am bringing ' + str(picnicItems['eggs']) + ' eggs.'

KeyError Traceback (most recent call

last)

~\AppData\Local\Temp\ipykernel_35416\2486019301.py in
1 picnicItems = {'apples': 5, 'cups': 2}

----> 2 'I am bringing ' + str(picnicItems['eggs']) +

eggs.'

KeyError: 'eggs'

In [70]: display quiz(path+"get.json", max_width=800)

What is printed by the following statements?

Error Alice Not Specified

None Not Specified Alice None

Update value using setdefault() Method

You'll often have to set a value in a dictionary for a certain key only if that key does
not already have a value. The code looks something like this:

You'll often have to set a value in a dictionary for a certain key only if that key does
not already have a value. The code looks something like this:

spam = {'name': 'Pooka', 'age': 5}
if 'color' not in spam:
spam['color'] = 'black’

You'll often have to set a value in a dictionary for a certain key only if that key does
not already have a value. The code looks something like this:

spam = {'name': 'Pooka', 'age': 5}
if 'color' not in spam:
spam['color'] = 'black’

The setdefault() method offers a way to do this in one line of code. The first

argument passed to the method is the key to check for, and the second argument is the
value to set at that key if the key does not exist.

The setdefault() method is a nice shortcut to ensure that a key exists. Here is a short
program that counts the number of occurrences of each letterina string.

The setdefault() method is a nice shortcut to ensure that a key exists. Here is a short
program that counts the number of occurrences of each letterina string.

message = 'It was a bright cold day in April, and the clocks were striking th
count = {}

for character in message:
if character not in count:
count[character] = 0
count[character] = count[character] + 1

print(count)

'g': 2, 'h': 3, '¢': 3, '0': 2, '1': 3, 'd': 3, 'y':'1, 'n': 4,

{'r': 1, 't': 6, " ': 13, 'w': 2, 'a': 4, 's': 3, 'b': 1, 'r': 5, 'i':
6,
'‘A': 1, 'p': 1, ',': 1, 'e': 5, 'k': 2, '".': 1}

message = 'It was a bright cold day in April, and the clocks were striking th
count = {}
for character in message:

count.setdefault(character, 0)

count[character] = count[character] + 1

print(count)
{'r': 1, 't': 6, " ': 13, 'w': 2, 'a': 4, 's': 3, 'b': 1, 'r': 5, 'i':
6

, 'g'+2, '"h': 3, '¢': 3, '0': 2, '1': 3, 'd': 3, 'y':'1, 'n': 4,
A':1, 'p': 1, ',': 1, 'e': 5, 'k': 2, '.': 1}

message "It was a bright cold day in April, and the clocks were striking th

count = E}

for character in message:
count.setdefault(character, 0)
count[character] = count[character] + 1

print(count)
{'r': 1, 't': 6, " ': 13, 'w': 2, 'a': 4, 's': 3, 'b': 1, 'r': 5, 'i':
6

, 'g'+2, '"h': 3, '¢': 3, '0': 2, '1': 3, 'd': 3, 'y':'1, 'n': 4,
A':1, 'p': 1, ',': 1, 'e': 5, 'k': 2, '.': 1}

You can view the execution of this program at https://autbor.com/setdefault. The program
loops over each character in the message variable’s string, counting how often each

character appears. The setdefault() method ensures that the key is in the count
dictionary (with a default value of 0) so the program doesn’t throw a KeyError error
when count[character] = count[character] + 1 is executed!

message "It was a bright cold day in April, and the clocks were striking th

count = E}

for character in message:
count.setdefault(character, 0)
count[character] = count[character] + 1

print(count)
{'r': 1, 't': 6, " ': 13, 'w': 2, 'a': 4, 's': 3, 'b': 1, 'r': 5, 'i':
6

, 'g'+2, '"h': 3, '¢': 3, '0': 2, '1': 3, 'd': 3, 'y':'1, 'n': 4,
A':1, 'p': 1, ',': 1, 'e': 5, 'k': 2, '.': 1}

You can view the execution of this program at https://autbor.com/setdefault. The program
loops over each character in the message variable’s string, counting how often each

character appears. The setdefault() method ensures that the key is in the count
dictionary (with a default value of 0) so the program doesn’t throw a KeyError error
when count[character] = count[character] + 1 is executed!

From the output, you can see that the lowercase letter ¢ appears 3 times, the space
character appears 13 times, and the uppercase letter A appears 1 time.

In [25]: display quiz(path+"setdefault.json", max_width=800)

What is the final state of the dictionary 'd" after executing the following
statements?

et e < ATLEEIA TS

B T e s

D st Tantu TS T e T >

B

{Ilall: IlalphaII’ Ilbll: Ilbetall} {llall: IIALPHAII, Ilbll: IlbetaII’ IICII: Ilgammall}

{Ilall: llalphall, llbll: "beta"’ IICII: Ilgammall} {Ilall: IIALPHAII, Ilbll: Ilbetall}

Dictionary Comprehensions

Dictionary comprehensions provide a convenient notation for quickly generating
dictionaries, often by mapping one dictionary to another. For example, in a
dictionary with unique values, you can reverse the key—value pairs:

Dictionary comprehensions provide a convenient notation for quickly generating
dictionaries, often by mapping one dictionary to another. For example, in a
dictionary with unique values, you can reverse the key—value pairs:

months = {'January': 1, 'February': 2, 'March': 3}

Dictionary comprehensions provide a convenient notation for quickly generating
dictionaries, often by mapping one dictionary to another. For example, in a
dictionary with unique values, you can reverse the key—value pairs:

months = {'January': 1, 'February': 2, 'March': 3}

months2 = {number:name for name, number in months.items()}
months2

{1: 'January', 2: 'February', 3: 'March'}

A dictionary comprehension also can map a dictionary ‘s values to new values. The
following comprehension converts a dictionary of names and lists of gradesinto a
dictionary of names and grade-point averages. The variables k and v commonly
mean key and value:

A dictionary comprehension also can map a dictionary ‘s values to new values. The
following comprehension converts a dictionary of names and lists of gradesinto a
dictionary of names and grade-point averages. The variables k and v commonly
mean key and value:

grades = {'Sue': [98, 87, 94], 'Bob': [84, 95, 91]}

A dictionary comprehension also can map a dictionary ‘s values to new values. The
following comprehension converts a dictionary of names and lists of gradesinto a
dictionary of names and grade-point averages. The variables k and v commonly
mean key and value:

grades = {'Sue': [98, 87, 94], 'Bob': [84, 95, 91]}

grades2 = {k:sum(v)/len(v) for k, v in grades.items()}
grades2

{'Sue': 93.0, 'Bob': 90.0}

Nested Dictionaries and Lists

A List of Dictionaries

Consider a game featuring aliens that can have different colors and point values. This
simple dictionary stores information about a particular alien:

Consider a game featuring aliens that can have different colors and point values. This
simple dictionary stores information about a particular alien:

alien © = {'color': 'green', 'points': 5}

Consider a game featuring aliens that can have different colors and point values. This
simple dictionary stores information about a particular alien:

alien © = {'color': 'green', 'points': 5}

The alien_@ dictionary contains a variety of information about one alien, but it has no
room to store information about a second alien, much less a screen full of aliens. How can
you manage a fleet of aliens? One way is to make a list of aliens in which each alien is a
dictionary of information about that alien.

aliens = []
Make 30 green aliens.
for alien _number in range(390):
new_alien = {'color': 'green', 'points': 5, 'speed': 'slow'}
aliens.append(new_alien)
Show the first 5 aliens.
for alien in aliens[:5]:
print(alien)
print("...")
Show how many aliens have been created.
print(f"Total number of aliens: {len(aliens)}")

{'color': 'green', 'points': 5, 'speed': 'slow'}
{'color': 'green', 'points': 5, 'speed': 'slow'}
{'color': 'green', 'points': 5, 'speed': 'slow'}
{'color': 'green', 'points': 5, 'speed': 'slow'}
{'color': 'green', 'points': 5, 'speed': 'slow'}

Total number of aliens: 30

aliens = []
Make 30 green aliens.
for alien _number in range(390):
new_alien = {'color': 'green', 'points': 5, 'speed': 'slow'}
aliens.append(new_alien)
Show the first 5 aliens.
for alien in aliens[:5]:
print(alien)
print("...")
Show how many aliens have been created.
print(f"Total number of aliens: {len(aliens)}")

{'color': 'green', 'points': 5, 'speed': 'slow'}
{'color': 'green', 'points': 5, 'speed': 'slow'}
{'color': 'green', 'points': 5, 'speed': 'slow'}
{'color': 'green', 'points': 5, 'speed': 'slow'}
{'color': 'green', 'points': 5, 'speed': 'slow'}

Total number of aliens: 30

These aliens all have the same characteristics, but Python considers each one a separate
object, which allows us to modify each alien individually. How might you work with a
group of aliens like this?

Imagine that one aspect of a game has some aliens changing color and moving faster as
the game progresses. When it's time to change colors, we can use a for loop and an if
statement to change the color of the aliens. For example, to change the first three aliens
to yellow, medium-speed aliens worth 10 points each, we could do this:

Imagine that one aspect of a game has some aliens changing color and moving faster as
the game progresses. When it's time to change colors, we can use a for loop and an if

statement to change the color of the aliens. For example, to change the first three aliens
to yellow, medium-speed aliens worth 10 points each, we could do this:

for alien in aliens[:3]:

if alien['color'] == 'green':
alien['color'] = 'yellow'
alien['speed'] = 'medium'

alien['points'] = 10

aliens[:10]

[{'color': 'yellow', 'points': 10, 'speed': 'medium’},
{'color': 'yellow', 'points': 10, 'speed': 'medium’},
{'color': 'yellow', 'points': 10, 'speed': 'medium’},
{'color': 'green', 'points': 5, 'speed': 'slow'},
{'color': 'green', 'points': 5, 'speed': 'slow'},
{'color': 'green', 'points': 5, 'speed': 'slow'},
{'color': 'green', 'points': 5, 'speed': 'slow'},
{'color': 'green', 'points': 5, 'speed': 'slow'},
{'color': 'green', 'points': 5, 'speed': 'slow'},
{'color': 'green', 'points': 5, 'speed': 'slow'}]

Sets

A set is an unordered collection of unique values. Sets may contain only immutable
objects, like strings, ints, floats and tuples that contain only immutable
elements.

A set is an unordered collection of unique values. Sets may contain only immutable

objects, like strings, ints, floats and tuples that contain only immutable
elements.

The following code creates a set of strings named colors:

A set is an unordered collection of unique values. Sets may contain only immutable

objects, like strings, ints, floats and tuples that contain only immutable
elements.

The following code creates a set of strings named colors:

colors = {'red', 'orange', 'yellow', 'green', 'red', 'blue'} # Similar to set
colors

{'blue', 'green', 'orange', 'red', ‘'yellow'}

A set is an unordered collection of unique values. Sets may contain only immutable
objects, like strings, ints, floats and tuples that contain only immutable
elements.

The following code creates a set of strings named colors:

colors = {'red', 'orange', 'yellow', 'green', 'red', 'blue'} # Similar to set
colors

{'blue', 'green', 'orange', 'red', ‘'yellow'}

Notice that the duplicate string 'red' was ignored (without causing an error). An
important use of sets is duplicate elimination, which is automatic when creating a
set . Also, the resulting set’s values may not be displayed in the same order as they

were listed! Though the color names are displayed in sorted order, sets are unordered.
You should not write code that depends on the order of their elements!

Though sets are iterable, they are not sequences and do not support indexing and
slicing with square brackets, [].

Though sets are iterable, they are not sequences and do not support indexing and
slicing with square brackets, [].

colors[0]

TypeError Traceback (most recent call
last)

~\AppData\Local\Temp\ipykernel _35416\4110793329.py in

----> 1 colors[@]

TypeError: 'set' object is not subscriptable

Though sets are iterable, they are not sequences and do not support indexing and
slicing with square brackets, [].

colors[0]

TypeError Traceback (most recent call

last)
~\AppData\Local\Temp\ipykernel _35416\4110793329.py in
----> 1 colors[@]

TypeError: 'set' object is not subscriptable

You can determine the number of items in a set with the built-in 1en() function:

Though sets are iterable, they are not sequences and do not support indexing and
slicing with square brackets, [].

colors[0]

TypeError Traceback (most recent call

last)
~\AppData\Local\Temp\ipykernel _35416\4110793329.py in
----> 1 colors[@]

TypeError: 'set' object is not subscriptable

You can determine the number of items in a set with the built-in 1en() function:

len(colors)

You can check whether a set contains a particular value using the in and not in
operators:

You can check whether a set contains a particular value using the in and not in
operators:

'red' in colors, 'purple' not in colors

(True, True)

You can check whether a set contains a particular value using the in and not in
operators:

'red' in colors, 'purple' not in colors

(True, True)

Sets are iterable, so you can process each set element with a for loop:

You can check whether a set contains a particular value using the in and not in
operators:

'red' in colors, 'purple' not in colors

(True, True)

Sets are iterable, so you can process each set element with a for loop:

for color in colors: # {'blue’', 'green', 'orange', 'red', 'yellow'}
print(color, end=" ")

red yellow orange green blue

Creating a Set with the Built-In set () Function

You can create a set from another collection of values by using the built-in set()
function — here we create a list that contains several duplicate integer values and use
that list as set 's argument:

You can create a set from another collection of values by using the built-in set()
function — here we create a list that contains several duplicate integer values and use
that list as set 's argument:

numbers = list(range(10)) + list(range(5))
numbers

(6, 1, 2, 3, 4, 5,6, 7,8,9, 0,1, 2, 3, 4]

You can create a set from another collection of values by using the built-in set()
function — here we create a list that contains several duplicate integer values and use
that list as set 's argument:

numbers = list(range(10)) + list(range(5))
numbers

[, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4]
set(numbers)

{@) 1) 2) 3) 4) 5) 6) 7) 8) 9}

If you need to create an empty set, you must use the set() function with empty
parentheses, rather than empty braces, {}, which represent an empty dictionary:

If you need to create an empty set, you must use the set() function with empty
parentheses, rather than empty braces, {}, which represent an empty dictionary:

set()

set()

If you need to create an empty set, you must use the set() function with empty
parentheses, rather than empty braces, {}, which represent an empty dictionary:

set()

set()

Python displays an empty set as set() to avoid confusion with Python's string
representation of an empty dictionary ({}).

Set Operators and Methods

Sets are mutable — you can add and remove elements, but set elements must be
immutable. Therefore, a set cannot have other sets as elements.

Sets are mutable — you can add and remove elements, but set elements must be
immutable. Therefore, a set cannot have other sets as elements.

Sets are mutable — you can add and remove elements, but set elements must be
immutable. Therefore, a set cannot have other sets as elements.

TypeError Traceback (most recent call
last)

~\AppData\Local\Temp\ipykernel 35416\3783331440.py in

---=>1 {7: 3, {3:537}}

TypeError: unhashable type: 'set

Methods for Adding and Removing Elements

Here we first discuss operators and methods that modify an existing set.

Here we first discuss operators and methods that modify an existing set.

Set method update() performs a union operation modifying the set in-place — the
argument can be any iterable:

Here we first discuss operators and methods that modify an existing set.

Set method update() performs a union operation modifying the set in-place — the
argument can be any iterable:

numbers = {1, 3, 5}
numbers.update(range(10))
numbers

{@) 1) 2) 3) 4) 5) 6) 7) 8) 9}

Set method add() inserts its argument if the argument is not already in the set;
otherwise, the set remains unchanged:

Set method add() inserts its argument if the argument is not already in the set;
otherwise, the set remains unchanged:

numbers.add(17)
numbers.add(3)
numbers

{6, 1, 2, 3, 4, 5,6, 7, 8, 9, 17}

Set method remove() removes its argument from the set — a KeyError occurs if
the value is not in the set:

Set method remove() removes its argument from the set — a KeyError occurs if
the value is not in the set:

numbers.remove(3)
numbers

{e) 1) 2) 4.’ 5) 6) 7) 8) 9) 17}

Set method remove() removes its argument from the set — a KeyError occurs if
the value is not in the set:

numbers.remove(3)
numbers

{O) 1) 2) 4.’ 5) 6) 7) 8) 9) 17}
numbers.remove(11)

KeyError Traceback (most recent call
last)

~\AppData\Local\Temp\ipykernel_35416\550142172.py in

----> 1 numbers.remove(11)

KeyError: 11

In [53]: display_quiz(path+"set.json", max_width=800)

Which of the following sets is equal to the set 's' after executing the following
statements? (Remember that sets are unordered.)

A KeyError is raised. {1,2,3,4,5,6,7}

{1,2,3,5,6, 7} {1,2 3,4, 5}

Set Comprehensions

Like dictionary comprehensions, you define set comprehensions in curly braces. Let's
create a new set containing only the unique even values in the 1list numbers:

Like dictionary comprehensions, you define set comprehensions in curly braces. Let's
create a new set containing only the unique even values in the 1list numbers:

numbers = [1, 2, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 10]
evens = {item for item in numbers if item % 2 == 0}

evens

{2) 4) 6) 8) 16}

Sorting the set and dictionary

As we mentioned last week, data types like tuples don't provide methods like sort() .
However Python provides the built-in function sorted() , which takes any sequence as

a parameter and returns a new container with the same elements in a different order. You
can also apply sorted to the set, but the returning container will be 1ist.

As we mentioned last week, data types like tuples don't provide methods like sort() .
However Python provides the built-in function sorted() , which takes any sequence as

a parameter and returns a new container with the same elements in a different order. You
can also apply sorted to the set, but the returning container will be 1ist.

help(sorted)
Help on built-in function sorted in module builtins:

sorted(iterable, /, *, key=None, reverse=False)

Return a new list containing all items from the iterable in ascend
ing order.

A custom key function can be supplied to customize the sort order,
and the

reverse flag can be set to request the result in descending order.

RANKS = [IIAII’ Il2ll, ll3ll, |l4ll’ ll5ll, ll6ll, |I7Il, "8"’ ll9ll, lllell, llJIl, llQll’ IIKII]

def rank_key(card):
return RANKS.index(card)

ori_set = {"A", "2", "7", "4", "Q"}
print(sorted(ori_set))

sorted list = sorted(ori_set, key=rank key)

Each element will be replaced by the output of rank _key() and sorts!

print(sorted list)

['2" l4.) l7.) lA.J lQl]
[lA.J '2" l4.) l7.) lQl]

RANKS = ["A", Il2ll, ll3ll, Il4ll’ ll5ll, ll6ll, |I7Il, "8"’ ll9ll, lllell, llJll’ llQll’ IIKII]

def rank_key(card):
return RANKS.index(card)

ori_set = {"A", "2", "7", "4", "Q"}
print(sorted(ori_set))

sorted list = sorted(ori_set, key=rank key)

Each element will be replaced by the output of rank _key() and sorts!

print(sorted list)

[IZ.J I4IJ l7l) lAIJ IQ]
[IA.J IZIJ I4IJ l7 J IQI]
Note that we have changed the behavior of the sorted() function by providing the

custom key that allows us to sort the data in a specific order using the predefined list

and the index() function.

56 / 62

If you would like to sort the dictionary, you need to use the items() method
(Otherwise, it will only return keys). The returning container will again be a list:

If you would like to sort the dictionary, you need to use the items() method
(Otherwise, it will only return keys). The returning container will again be a list:

grade = {'calculus':85, 'introduction to mathematics':80, 'introduction to co
sorted list = sorted(grade.items())
print(sorted list)

[('calculus', 85), ('introduction to computer science', 90), ('introdu
ction to mathematics', 80), ('linear algebra', 95)]

If you would like to sort the dictionary, you need to use the items() method
(Otherwise, it will only return keys). The returning container will again be a list:

grade = {'calculus':85, 'introduction to mathematics':80, 'introduction to co
sorted list = sorted(grade.items())
print(sorted list)

[('calculus', 85), ('introduction to computer science', 90), ('introdu
ction to mathematics', 80), ('linear algebra', 95)]

If you would like to sort by the value, use the following code:

If you would like to sort the dictionary, you need to use the items() method
(Otherwise, it will only return keys). The returning container will again be a list:

grade = {'calculus':85, 'introduction to mathematics':80, 'introduction to co
sorted list = sorted(grade.items())
print(sorted list)

[('calculus', 85), ('introduction to computer science', 90), ('introdu
ction to mathematics', 80), ('linear algebra', 95)]

If you would like to sort by the value, use the following code:

def value key(x):
return x[1]

grade = {'calculus':85, 'introduction to mathematics':80, 'computer programmi
sorted dict = sorted(grade.items(), key=value key)

print(sorted dict)

[("introduction to mathematics', 80), ('calculus', 85), ('computer pro
gramming', 90), ('linear algebra', 95)]

> Exercise 2: Assume that we have a JSON file called

Pokemon. json. Each item in the list is a dictionary that stores
the name of the Pokemon as well as the species’ strength.
Complete the program by filling the missing part that reads the
data of Pokemon from the Pokemon. json and displays the
name with total species strength (summation of HP, Attack,

Defense, Sp. Attack, Sp. Defense and Speed) line by line sorted by
total species strength.

import json

1. Load the JSON data from the file and reads contents to pokemon_data

with open('Pokemon.json', 'r') as file:
pokemon data = json.load(file)

2. Calculate the total species strength for each Pokemon and add it to pokei

for pokemon in pokemon_data:
Your code here

pokemon|['total strength'] = total strength

3. Sort the Pokemon data by total species strength
def value key(x):
return x['total strength']

Your code here
sorted _pokemon_data = sorted(pokemon_data, s

4. Display the sorted Pokemon data
for pokemon in sorted_pokemon_data:

print(+ "has a total species strength of"+

In this chapter, we discussed Python's dictionary and set collections. They are both
unorder, mutable and do not allow duplicates.

A short comparison of the containers is shown below:

Feature List Tuple Dictionary Set
Mutable (Can be modified in Yes (keys are
Yes No : Yes
place) immutable)
It I in f
erable (Can be use in for Ves Ves Ves Ves
loop)
Ord [,
.r .ered (Can access by index Yes Yes No No
slicing)
: . Not
Duplicate Values Allowed Allowed Not in keys

allowed

In [69]: from jupytercards import display flashcards
fpath= "https://raw.githubusercontent.com/phonchi/nsysu-mathl06A/refs/heads/m
display flashcards(fpath + 'ch5.json')

key-value

Next

	Introduction
	Dictionaries
	The keys(), values(), and items() Methods
	Checking Whether a Key or Value Exists in a Dictionary
	Retrieve value uisng get() Method
	Update value using setdefault() Method
	Dictionary Comprehensions

	Nested Dictionaries and Lists
	Sets
	Creating a Set with the Built-In set() Function
	Set Operators and Methods
	Methods for Adding and Removing Elements
	Set Comprehensions

	Sorting the set and dictionary

